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Summary

e Event Generators in the LHC provide a unique opportunity to
leverage HPCs.

- They are experiment independent and compute intense.

e Primary NLO generators for the LHC are MadGraph and
Sherpa.

e Primary LO generator for the LHC is largely Pythia8
e Challenges include:

- Generator development has historically not been
supported by the DOE, leading to most generator teams
being based outside the US. This is changing.

- Not easy for a software engineer to pick up and just re-
factor for performance. Highly desktop-CPU optimized
algorithms resulted in obscure algorithmic choices.

* But we progress.
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Two Groups, Two Approaches
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* MadGraph5: CERN: Stefan Roiser, Andrea Valassi, Laurence Field, % = ¢« s ™[
Olivier Mattelaer, ANL: Walter Hopkins, Tyler Burch, Taylor Childers, “
Smita Darmora

- MG auto-generates compilable code based on what the user wants.

- Generated a few of these processes, converted them to CUDA and
Kokkos

- MG devs working to reverse engineer the conversions back into the
auto-generation code.

e Sherpa: FNAL: Stefan H6che, Steve Mrenna, Josh Isaacson, LUND: Stefan
Prestel, UCinn: Holger Schulz

- Taking a more ground up approach

- Re-engineering algorithms for parallelization at many scales
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—— Expected Scaling: 0(n*)

Ground Up Improvements
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F—— Actual Scaling: ©(n*?3)

e Sherpa team working on re-engineering high-multiplicity
algorithms that tend to lead compute intensive LHC calcs
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e This work focuses on making a key calculation GPU friendly.
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Time per Event (ms)

e The Berends-Giele algorithm for color-ordered amplitudes (no

=

o
b
I

color factors included yet) is shown here at varying gluons.
® GPU used: Telsa P100 16 GB ——

Josh Isaacson (FNAL) §

e Each thread calculates one event (not many threads per event) Number of Gluons

=> 1024 events at a time

e Currently, memory limits the maximum number of events to
be stored on the GPU at a given time.
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Ground Up Improvements

e Additional work to re-engineering the event generation
workflow to be more scalable.

e Published in 2019 was some initial work on LO boson
production at scale.

e This work revisited the event generation workflow

(integration, generate, unweight,) to scale up on current HPC
systems.

e Used Comix (part of Sherpa) and Pythia.

e This work continues with NLO calculations.
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https:/ /arxiv.org/pdf/1905.05120.pdf
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MadGraph GPU Porting Effort

e The MadGraph team has focused on how to convert their
framework to auto-generate CUDA algorithms.

e These have largely, though not entirely, been based on line-by-
line conversion and not re-engineering algorithms for GPUs.

e The GitHub repo contains autogenerated code for a few

processes, which have been converted to CUDA and now
Kokkos.

e These examples are being used by the MG developers
(Olivier) to convert the code-generation to output CUDA (not
yet Kokkos).

e Currently this is all based on a simple Rambo phase-space
generation

e We don’t have any detailed results just yet, besides code.
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https:/ / github.com /madgraph5/madgraph4gpu

#include <cmath>

#include <thrust/complex.h>

using namespace std;

namespace MG5_sm

{

__device__ void oxxxxx(const double p[3],

thrust::complex<double> fo[6]);

__device__ void sxxxxx(const double p[3],

__device__ void ixxxxx(const double p[3],

thrust::complex<double> fi[6]);

__device__ void txxxxx(const double p[3],

thrust::complex<double> fi[18]);

__device__ void vxxxxx(const double p[3],

thrust::complex<double> v[6]);

double fmass, int nhel, int nsf,

int nss, thrust::complex<double> sc[3]

double fmass, int nhel, int nsf,

double tmass, int nhel, int nst,

double vmass, int nhel, int nsv,
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Machine Learning for EvGen
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FIG. 2: Projections of the sampled parameters and color coded acceptances. The plot on the left suggest a high learning rate, https / / aerV-Org / pdf / 200110028pdf
coupled with a large number of epochs to be beneficial. The plot on the right suggests a strong preference for a small number
of bins. The best performing configuration is indicated with a star.

e Sherpa group has also investigated using Neural Networks to guide phase space integration, as a VEGAS replacement.
e NNs can be GPU friendly and thus moving from VEGAS to NNs could improve the usefulness of HPCs for EvGen.

e “The new integrator based on Neural Networks and Normalizing Flows gives a much larger unweighting efficiency
than Sherpa in processes with few jets, both at LO and at NLO precision. In processes with more final-state jets it
performs similarly to the existing integration techniques in Sherpa. [...] We expect that in the high multiplicity cases
the Neural Network + Normalizing Flow technique will also outperform Sherpa, if it can be trained over sufficiently
many epochs with sufficiently many sample points.”
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Summary

* EvGen and HEP software communities are working to make
these tools utilize accelerators and scale up on HPCs.

e Given their independence from experimental software
frameworks and concentration of computation, they are easier
targets for optimization.

e Moving these frameworks forward requires a lot of expert
involvement due to the complex algorithms that have been
developed.

e MadGraph team working on establishing some metrics of
success, including physics validation. Hope to have some
results and comparisons between CPU, CUDA, Kokkos in
coming months.

e Work on building new accelerator friendly EvGen algorithms
and workflows should be providing new results soon.
Publications to follow.
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